skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Le-Khac, Nhien-An"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Aerial images are a special class of remote sensing images, as they are intentionally collected with a high degree of overlap. This high degree of overlap complicates existing index strategies such as R-tree and Space Filling Curve (SFC) based index techniques due to complications in space splitting, granularity of the grid cells and excessive duplication of image object identifiers (IOIs). However, SFC based space ordering can be modified to provide scalable management of overlapping aerial images. This involves overcoming similar IOIs in adjacent grid cells, which would naturally occur in SFC based grids with such data. IOI duplication can be minimized by merging adjacent grid cells through the proposed “Designing Adjacent Cell Merge Algorithm” (DACMA). This work focuses on establishing a proper adjacent cell merge metric and merge percentage value. Using a highly scalable, distributed HBase cluster for both a single aerial mapping project, and multiple aerial mapping projects, experiments evaluated Jaccard Similarity (JS) and Percentage of Overlap (PO) merge metrics. JS had significant advantages: (i) generating smaller merged regions and (ii) obtaining over 21% and 36% improvement in reducing query response times compared to PO. As a result, JS is proposed for the merge metric for DACMA. For the merge percentage two considerations were dominant: (i) substantial storage reductions with respect to both straight forward SFC-based cell space indexing and 4SA based indexing, and (ii) minimal impact on the query response time. The proposed merge percentage value was selected to optimize the storage (i.e. space) needs and response time (i.e. time) herein named the “Space-Time Trade-off Optimization Percentage” value (or STOP value) is presented. 
    more » « less
  2. Current state-of-the-art point cloud data management (PCDM) systems rely on a variety of parallel architectures and diverse data models. The main objective of these implementations is achieving higher scalability without compromising performance. This paper reviews the scalability and performance of state-of-the-art PCDM systems with respect to both parallel architectures and data models. More specifically, in terms of parallel architectures, shared-memory architecture, shared-disk architecture, and shared-nothing architecture are considered. In terms of data models, relational models, and novel data models (such as wide-column models) are considered. New structured query language (NewSQL) models are considered. The impacts of parallel architectures and data models are discussed with respect to theoretical perspectives and in the context of existing PCDM implementations. Based on the review, a methodical approach for the selection of parallel architectures and data models for highly scalable and performance-efficient PCDM system development is proposed. Finally, notable research gaps in the PCDM literature are presented as possible directions for future research. 
    more » « less
  3. State-of-the-art, scalable, indexing techniques in location-based image data retrieval are primarily focused on supporting window and range queries. However, support of these indexes is not well explored when there are multiple spatially similar images to retrieve for a given geographic location. Adoption of existing spatial indexes such as the kD-tree pose major scalability impediments. In response, this work proposes a novel scalable, key-value, database oriented, secondary-memory based, spatial index to retrieve the top k most spatially similar images to a given geographic location. The proposed index introduces a 4-dimensional Hilbert index (4DHI). This space filling curve is implemented atop HBase (a key-value database). Experiments performed on both synthetically generated and real world data demonstrate comparable accuracy with MD-HBase (a state of the art, scalable, multidimensional point data management system) and better performance. Specifically, 4DHI yielded 34% - 39% storage improvements compared to the disk consumption of the original index of MD-HBase. The compactness in 4DHI also yielded up to 3.4 and 4.7 fold gains when retrieving 6400 and 12800 neighbours, respectively; compared to the adoption of original index of MD-HBase for respective neighbour searches. An optimization technique termed “Bounding Box Displacement” (BBD) is introduced to improve the accuracy of the top k approximations in relation to the results of in-memory kD-tree. Finally, a method of reducing row key length is also discussed for the proposed 4DHI to further improve the storage efficiency and scalability in managing large numbers of remotely sensed images. 
    more » « less